article

Photomorphogenesis – Theoretical Background for teaching Plant Biology in Schools

Jana Albrechtová, Libor Sedlecký, Věra Čížková

information

volume: 26
year: 2017
issue: 4
fulltext: PDF

online publishing date: 31/12/2017
DOI: 10.14712/25337556.2017.4.3
ISSN (Online): 2533-7556

Licence Creative Commons
Toto dílo podléhá licenci Creative Commons Uveďte původ 4.0 Mezinárodní License.

abstract

Plant photomorphogenesis is a complex of developmental and growth processes of light-mediated changes in plant morphology and structure, ontogenetic patterns as well as movements of plants, plant parts and/or organelles. During photomorphogenesis, plants respond to the quality, intensity and/or direction of radiation, to which they are exposed, by changes in plant development, growth and/or movement. This is a completely separate process from photosynthesis where light is used as a source of energy and for building of plant biomass while in photomorphogenesis radiation plays a role of a signal. Photomorphogenesis is mediated by a sophisticated network of photoreceptors, which can be responsive to different kind of radiation and interfere in their action on plant photomorphogenetic processes. The most important families of photoreceptors are: 1) phytochromes sensing particularly in red visible light and being crucial in numerous photomorphogenetic processes; 2) cryptochromes, phototropins and recently discovered ZTL/FKF1/LKP2 proteins sense blue light and UV-A, while 3) very recently discovered UVR8 receptor percieve UV-B radiation. These photoreceptors interact in accord to orchestrate numerous developmental and physiological processes, e.g. germination, deetiolization, shade avoidance, phototropism, leaf development, flowering, movement of chloroplasts to optimize their location in order to perceive the optimum irradiance, etc. . Due to photoreceptors, plants perceive their neighbours and can avoid shading by them through photomorphogenetic processes. In artificial greenhouse cultivation systems, it is possible to efficiently manipulate artificial radiation in order to optimize quality and quantity of plant biomass and yield. Nowadays, due to technological progress it is possible to cultivate plants not only in winter but also in polar regions during polar night. We can also manipulate radiation quality (e.g. using LED lighting), to induce better plant resistance to both abiotic factors such as drought, herbivores or pathogens. Also we can positively affect yield quality, e.g. to lower nitrates or increase anthocyanins in yield biomass. In addition, we can affect timing of flowering, seed germination etc. Photomorphogenesis is only marginally covered by all available Czech textbooks for high schools if at all and no practical experimental protocols are included. In the presented paper we describe radiation sensing by plants via photoreceptors, give basic overview of photomorphogenetic processes and demonstrate a possible use of photomorphogenetic processes in agricultural and horticultural practice. In the subsequent paper we will describe selected photomorphogenetic processes in more detail giving the background to the last intended paper with protocols for specific photomorphogenetic experiments.


keywords

blue light (B), cryptochromes, infrared radiation (IR), photoreceptors, photosensoric receptors, phototropins, phytochromes, plant growth and development, plant movements, receptor UVR8, ultraviolet (UV) radiation, red light (R), signal transduction, ZTL/FKF1/LKP2 proteiny

fulltext (PDF )

PDF

References

Briggs, W. R., & Olney, M. A. (2001). Photoreceptors in Plant Photomorphogenesis to Date. Five Phytochromes, Two Cryptochromes, One Phototropin, and One Superchrome. Plant Physiology, 125(1), 85–88. https://doi.org/10.1104/pp.125.1.85

Casal, J. J. (2013). Photoreceptor Signaling Networks in Plant Responses to Shade. Annual Review of Plant Biology, 64(1), 403–427. Davis, P. A., & Burns, C. (2016). Photobiology in protected horticulture. Food and Energy Security, 5(4), 223–238. https://doi.org/10.1146/annurev-arplant-050312-120221

Demotes-Mainard, S., Péron, T., Corot, A., Bertheloot, J., Le Gourrierec, J., Pelleschi-Travier, S., Crespel, L., Morel, P., Huché-Thélier, L., Boumaza, R., Vian, A., Guérin, V., Leduc, N., & Sakr, S. (2016). Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany, 121, 4–21. https://doi.org/10.1016/j.envexpbot.2015.05.010

Escobar-Bravo, R., Klinkhamer, P. G. L., & Leiss, K. A. (2017). Interactive Effects of UV-B Light with Abiotic Factors on Plant Growth and Chemistry, and Their Consequences for Defense against Arthropod Herbivores. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.00278

Glosová, B. M. (2010). Vliv světelných podmínek a teplotního stresu na aktivaci antioxidačních mechanismŭ u Solanum lycopersicum (diplomová práce). Nepublikováno. Univerzita Palackého v Olomouci. pp117 Získáno z http://theses.cz/id/7ymjjn/82264-162869564.pdf

Heijde, M., & Ulm, R. (2012). UV-B photoreceptor-mediated signalling in plants. Trends in Plant Science, 17(4), 230–237. https://doi.org/10.1016/j.tplants.2012.01.007

Huché-Thélier, L., Crespel, L., Gourrierec, J. L., Morel, P., Sakr, S., & Leduc, N. (2016). Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environmental and Experimental Botany, 121, 22–38. https://doi.org/10.1016/j.envexpbot.2015.06.009

Ito, S., Song, Y. H., & Imaizumi, T. (2012). LOV Domain-Containing F-Box Proteins: Light-Dependent Protein Degradation Modules in Arabidopsis. Molecular Plant, 5(3), 47–56. https://doi.org/10.1093/mp/sss013

Jelínek, J., & Zicháček, V., 2014. Biologie pro gymnázia. Olomouc: Nakladatelství Olomouc.

Kincl, L., & Jakrlová, J., (2003). Biologie rostlin pro 1. ročník gymnázií. Praha: Fortuna.

Krekule, J., & Macháčková, I. (1996). Biologické hodiny u rostlin. Vesmír, 1996/1 (75), 27-31. Získáno z http://casopis.vesmir.cz/clanek/biologicke-hodiny-u-rostlin

Krekule, J., & Macháčková, I. (2000). Fotomorfogeneze, přizpůsobení rostlin světelným podmínkám. Živa, 4/2000.(s. 159). Získáno z http://ziva.avcr.cz/2000-4/fotomorfogeneze-prizpusobeni-rostlin-svetelnym-podminkam.html

Kubát, K., Kalina, T., Kováč, J., Kubátová, D., Prach, K., & Urban. Z., (1998). Botanika. Praha: Scientia.

Mathews, S. (2010). Evolutionary studies illuminate the structural-functional model of plant phytochromes. The Plant Cell, 22(1), 4–16. https://doi.org/10.1105/tpc.109.072280

Mawphlang, O. I. L., & Kharshiing, E. V. (2017). Photoreceptor Mediated Plant Growth Responses: Implications for Photoreceptor Engineering toward Improved Performance in Crops. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01181

Montgomery, B. L. (2016). Spatiotemporal Phytochrome Signaling during Photomorphogenesis: From Physiology to Molecular Mechanisms and Back. https://doi.org/10.3389/fpls.2016.00480

Pavlová L., & Daněk L. (2002a). Fotomorfogenese I. Kryptochromy a fototropin. Biologické listy 67: 195-205, 2002.

Pavlová L., & Daněk L. (2002b). Fotomorfogeneze II. Fytochromy. - Biologické listy 67: 207-224. 2002.

Pavlová L., (2006) Fyziologie rostlin, Kap. 7. Vnější fyzikální a biotické faktory. Praha: Karolinum. http://kfrserver.natur.cuni.cz/studium/prednasky/pavlova/fyzrost/

Rizzini L., Favory J. J., Cloix C., Faggionato D., O’Hara A., Kaiserli E., Baumeister R., Schäfer E., Nagy F., Jenkins G. I., & Ulm, R. (2011). Perception of UV-B by the Arabidopsis UVR8 protein. - Science 332: 103-106. https://doi.org/10.1126/science.1200660

Rosypal, S. a kol. (2003). Nový přehled biologie. Praha: Scientia.

Sedlecký L. (2013). Fotomorfogeneze: vliv světla na procesy vývoje rostlin ve výuce biologie na školách (diplomová práce). Nepublikováno. Přírodovědecká fakulta Univerzity Karlovy, Praha.

Sullivan, J. A., & Deng, X. W. (2003). From seed to seed: the role of photoreceptors in Arabidopsis development. Developmental Biology, 260(2), 289–297. https://doi.org/10.1016/S0012-1606(03)00212-4

Taiz L., & Zeiger, E. (2006). Plant Physiology. Sunderland, USA: Sinauer Associates. Inc., 690. Částečně získáno z http://6e.plantphys.net/

Tang, Y., & Liesche, J. (2017). The molecular mechanism of shade avoidance in crops – How data from Arabidopsis can help to identify targets for increasing yield and biomass production. Journal of Integrative Agriculture, 16(6), 1244–1255. https://doi.org/10.1016/S2095-3119(16)61434-X

ÚEB a ÚFE AVČR: Ústav experimentální botaniky Akademie věd České republiky a Ústav fotoniky a elektroniky Akademie věd České republiky. (2007). Není světlo jako světlo aneb Jak to vidí rostliny. Získáno z http://www.ueb.cas.cz/cs/system/files/users/public/kolar_27/PDF_soubory/postery_rostliny_svetlo.pdf

Vanhaelewyn, L., Prinsen, E., Van Der Straeten, D., & Vandenbussche, F. (2016). Hormone-controlled UV-B responses in plants. Journal of Experimental Botany, 67(15), 4469–4482. https://doi.org/10.1093/jxb/erw261

Wang, H. (2005). Signaling Mechanisms of Higher Plant Photoreceptors: A Structure‐Function Perspective. Current Topics in Developmental Biology, 68, 227–261. https://doi.org/10.1016/S0070-2153(05)68008-8

Weller, J. L., Batge, S. L., Smith, J. J., Kerckhoffs, L. H. J., Sineshchekov, V. A., Murfet, I. C., & Reid, J. B. (2004). A Dominant Mutation in the Pea PHYA Gene Confers Enhanced Responses to Light and Impairs the Light-Dependent Degradation of Phytochrome A. Plant Physiology, 135(4), 2186–2195. https://doi.org/10.1104/pp.103.036103

Yang, Z., Liu, B., Su, J., Liao, J., Lin, C., & Oka, Y. (2017). Cryptochromes Orchestrate Transcription Regulation of Diverse Blue Light Responses in Plants. Photochemistry and Photobiology, 93(1), 112–127. https://doi.org/10.1111/php.12663


We use cookies to analyse our traffic. More information