Promoting Coherence in Biology Education: Introduction of Yo-Yo Strategy in the Czech Republic

Markéta Machová, Marie-Christine Knippels


volume: 30
year: 2021
issue: 2
fulltext: PDF

online publishing date: 30/8/2021
DOI: 10.14712/25337556.2021.2.3
ISSN (Online): 2533-7556

Licence Creative Commons
Toto dílo podléhá licenci Creative Commons Uveďte původ 4.0 Mezinárodní License.


Today´s biology curriculum at levels ISCED 2 and 3 consists of many topics like genetics, evolution, and ecology that are on the one hand very important and help students to understand complex processes that shape the environment around them, but on the other hand, are also difficult to comprehend. The main problem with these topics is that processes within their scope occur on multiple levels of biological organization that also interact among themselves in diverse ways. The biology curriculum and textbooks introduce levels of organization (molecules, cells, tissues, organisms, populations, etc.) and describe the characteristics and functions of entities at each level (like cells and their organelles). Unfortunately, in the case of the Czech Republic and other European countries, they do not sufficiently promote the connections among the levels of biological organization and concepts and processes on, and across, the levels, and therefore, they lack coherence in the presented information. This lack of coherence then easily results in misunderstandings by students of scientific concepts (like respiration or heredity). To cope with these problems, there are currently many strategies that help to promote students’ coherent understanding of biological phenomena. One of them is the Yo-Yo Strategy, that helps students to define, connect and navigate among the levels of biological organization. In the paper, we discuss how to start using this teaching and learning method successfully in class in order to influence positively students’ understanding of even very abstract biological topics.


levels of biological organization, coherence, Yo-Yo Strategy, biology education

fulltext (PDF )



AKÇAY, S. (2017). Prospective elementary science teachers’ understanding of photosynthesis and cellular respiration in the context of multiple biological levels as nested systems. Journal of Biological Education, 51(1), 52–65.

BROOKS, D. S. (2019). A New Look at ‘Levels of Organization’ in Biology. Erkenntnis.

DUNCAN, R. G., & REISER, B. J. (2007). Reasoning Across Ontologically Distinct Levels: Students’ Understandings of Molecular Genetics. Journal of Research in Science Teaching, 44(7), 938–959.

DÜSING, K., ASSHOFF, R., & HAMMANN, M. (2019). Students’ conceptions of the carbon cycle: identifying and interrelating components of the carbon cycle and tracing carbon atoms across the levels of biological organisation. Journal of Biological Education, 53(1), 110–125.

GARDNER, A. L., BYBEE, R. W., ENSHAN, L., & TAYLOR, J. A. (2014). Analyzing The Coherence Of Science Curriculum Materials. Curriculum & Teaching Dialogue, 16(1/2), 65–86.

GILISSEN, M. G. R., KNIPPELS, M. C. P. J., & VAN JOOLINGEN, W. R. (2020). Bringing systems thinking into the classroom. International Journal of Science Education, 1–28.

HEJNOVÁ, E. (2011). Integrovaná výuka přírodovědných předmětů na základních školách v českých zemích – minulost a současnost. Scientia in Educatione, 2(2), 77–90.

HLAVÁČOVÁ, L. (2017). Systematický přístup prezentace učiva přírodopisu/biologie. Biologie. Chemie. Zeměpis, 26(3), 40–44.

JANŠTOVÁ, V., & JÁČ, M. (2015). Teaching Molecular Biology at Grammar Schools: Analysis of the Current State and Potential of its Support. Scientia in Educatione, 6(1), 14–39.

JÖRDENS, J., ASSHOFF, R., KULLMANN, H., & HAMMANN, M. (2016). Providing vertical coherence in explanations and promoting reasoning across levels of biological organization when teaching evolution. International Journal of Science Education, 38(6), 960–992.

KNIPPELS, M. C. P. J. (2002). Coping with the abstract and complex nature of genetics in biology education: The yo-yo learning and teaching strategy [Utrecht University].

KNIPPELS, M. C. P. J., & WAARLO, A. J. (2018). Development, uptake, and wider applicability of the yo-yo strategy in biology education research: A reappraisal. Education Sciences, 8(3), 129.

KNIPPELS, M. C. P. J., WAARLO, A. J., & BOERSMA, K. T. (2005). Design criteria for learning and teaching genetics. Journal of Biological Education, 39(3), 108–112.

Kuhn, R. W. (1999). Biological organization——A new look at an old problem. BioScience, January, 51–57.

Lewis, P. A. (2016). Systems, structural properties, and levels of organisation: The influence of Ludwig Von Bertalanffy on the work of FA Hayek. In L. Fiorito, S. Schealli, & C. E. Suprinyak (Eds.), Research in the History of Economic Thought and Methodology (Vol. 34A, pp. 125–159). Emerald.

MACHOVÁ, M. (2021). Genetika v učebnicích biologie a přírodopisu: historie a současnost. Scientia in Educatione, 11(2), 14–39.

MALCOVÁ, K., & JANŠTOVÁ, V. (2018). Jak jsou hodnoceny jednotlivé obory biologie žáky 2. stupně ZŠ a nižšího gymnázia? Biologie Chemie Zeměpis, 27(1), 23–34.

MANDÍKOVÁ, D., & TOMÁŠEK, V. (2017). Výsledky českých žáků v šetření TIMSS 2015. MATEMATIKA–FYZIKA–INFORMATIKA, 26(5), 349–361.

NÚV. (2017). Rámcový vzdělávací program pro základní vzdělávání. MŠMT.

RICCA, B. (2012). Beyond Teaching Methods: A Complexity Approach. Complicity: An International Journal of Complexity and Education, 9(2), 31–51.

Rokos, L., & Holec, J. (2019). Podkladová studie: Vzdělávání o živé a neživé přírodě – přírodopis, biologie a geologie. NÚV.

ROSEMAN, J. E., STERN, L., & KOPPAL, M. (2010). A method for analyzing the coherence of high school biology textbooks. Journal of Research in Science Teaching, 47(1), 47–70.

SCHNEEWEISS, N., & GROPENGIESSER, H. (2019). Organising levels of organisation for biology education: A systematic review of literature. Education Sciences, 9(3), 207.

ŠORGO, A., & ŠILING, R. (2017). Fragmented knowledge and missing connections between knowledge from different hierarchical organisational levels of reproduction among adolescents and young adults. Center for Educational Policy Studies Journal, 7(1), 69–91.

STRAND, S., & BOES, K. E. (2019). Drawing a link between genetic inheritance and meiosis: A set of exercises for the undergraduate biology classroom. Journal of Microbiology & Biology Education, 20(2).

UMMELS, M. H. J., KAMP, M. J. A., DE KROON, H., & BOERSMA, K. T. (2015). Promoting Conceptual Coherence Within Context-Based Biology Education. Science Education, 99(5), 958–985.

VÁGNEROVÁ, P., BENEDIKTOVÁ, L., & KOUT, J. (2018). Kritická místa ve výuce přírodopisu – jejich identifikace a příčiny. Arnica, 8(1), 56–62.

VERHOEFF, R. P., KNIPPELS, M. C. P. J., GILISSEN, M. G. R., & BOERSMA, K. T. (2018). The theoretical nature of systems thinking. Perspectives on systems thinking in biology education. Frontiers in Education, 3(40), 31–51.

VERHOEFF, R. P., WAARLO, A. J., & BOERSMA, K. T. (2008). Systems modelling and the development of coherent understanding of cell biology. International Journal of Science Education, 30(4), 543–568.

VLČKOVÁ, J., KUBIATKO, M., & USAK, M. (2016). Czech high school students’ misconceptions about basic genetic concepts: Preliminary results. Journal of Baltic Science Education, 15(6), 738–745.

WAHEED, T., & LUCAS, A. M. (1992). Understanding interrelated topics: photosynthesis at age 14 +. Journal of Biological Education, 26(3), 193–199.

We use cookies to analyse our traffic. More information