Subject Matters of Experiments and Observations of Water Animals in School Aquarium II (Breathing of Water Animals)
Aquatic animals also need oxygen to live. They have to breathe in oxygen that is dissolved in water or from the air above the water, using various structural adaptations (gill, gill chambers, skin, air tube, air bubble, special nostrils, blowhole). Some water animals can be used in school aquaria for demonstration of various kinds of breathing. Simple diffusion over a relatively thin integument is known e.g. in sludge worms (Tubifex tubifex). Extraction of oxygen from water using a plastron or physical gill can be presented in lesser water boatman (Corixa punctata) or bentic water bug Aphelocheirus aestivalis. Water nymphs of insect often used tracheal gills (stonefly nymphs /Plecoptera/ have gills on their thorax and mayfly nymphs /Ephemeroptera/ have gills on their abdomen). Diving beetles (Dytiscidae) have air supply in the cavity under the elytra. Water scavenger beetles (Hydrophiliidae) replenish their air supply by breaking the surface of the water with their antennae and then holding their air supply bubbles in place using a dense mat of hair under the body. Some animals like water scorpions (Nepa cinerea), water stick insect (Ranatra linearis) or mosquito larvae and pupae take oxygen from surface via breathing tubes (siphons). The pond snail (Lymnaea stagnalis) has a gas-filled mantel cavity and ventilation is accomplished by opening and closing movements of the apex of a muscular tube (the pneumostome) that forms the entrance to the mantel cavity. Water spider (Argyroneta aquatica) builts diving bell under the water surface and fills it with air. In fish water flows in through the mouth, than water flows over the gills, than out of the fish. Some fish have accessory respiratory organs, e.g. supra-branchial chamber called as labyrinthine organ (e.g. Siamese fighting fish Betta splendens, paradise fish Macropodus opercularis). Frogs start life as aquatic tadpoles, breathing underwater through internal gills and their skin. Adult water frogs (e.g. African clawed frog, Xenopus laevis) breath through lungs.
school aquarium, animal breathing, water animals
Alsterberg, G. (1922): Die Respiratorischen Mechanismem der Tubificiden. Lunds. Univ. Årsskr. 18: 1-222.
De Bakker, D., Baetens, K., Van Nimmen, E., Gellynck, K., Mertens, J., Van Langenhove, L. & Kiekens, P. (2006): Description of the structure of different silk threads produced by the water spider Argyroneta aquatica (Clerck, 1757) (Araneae: Cybaeidae). Belg. J. Zool., 136 (2): 137-143.
Blažka, P. (1958): The anaerobic metabolism of fish. Physiological Zoology 31, 117–128;
Blažka, P. & Okrouhlík, J. (2005): Život bez kyslíku. Jak se nepřítomnosti kyslíku brání nižší obratlovci. Vesmír 84: 604-607. https://doi.org/10.1086/physzool.31.2.30155385
Cruz-Neto, A. P. & Steffensen J. F. (1997): The effects of acute hypoxia and hypercapnia on oxygen consumption of the freshwater European eel. Journal of Fish Biology, 50: 759-769. https://doi.org/10.1111/j.1095-8649.1997.tb01970.x
Famme, P. & Knudsen, J. (1985): Oecologia, 65: 599. https://doi.org/10.1007/BF00379679
Graham, J. B. (1997): Air-breathing Fishes: Evolution, Diversity, and Adaptation, Academic Press, San Diego.
Hanel, L. (2001): Akvaristika. Biologie a chov vodních živočichů. I. Obecná část. Skriptum Přírodovědecké fakulty Univerzity Karlovy, 228 s.
Hanel, L. (2004): Akvaristika. Biologie a chov vodních živočichů. II. Speciální část. Skriptum Přírodovědecké fakulty Univerzity Karlovy, 260 s.
Hanel, L. (1997): Vodouch stříbřitý v akváriu. Akvárium terárium, 6: 13.
Helfman, G. S., Collette, B. B., Facey, D. E. & Bowen, B. W. (2009): The diversity of fishes. Biology, Evolution, and ecology. Wiley-Blackwell, 720 pp.
Ishimatsu, A. (2012): Evolution of the Cardiorespiratory System in Air-Breathing Fishes. Aqua-BioScience Monographs, 5, 1: 1–28. https://doi.org/10.5047/absm.2012.00501.0001
Kodrík, D. (2000): Fyziologie hmyzu. Učební texty. Entomologický ústav Akademie věd České republiky a Biologická fakulta, Jihočeská Univerzita v Českých Budějovicích, 1-107.
Lellák, J., Kořínek, V., Fott, J., Kořínková, J. & Punčochář, P. (1972): Biologie vodních živočichů. Skriptum přírodovědecké fakulty UK Praha, 218 s.
Maina, J. N. (1998): The gas exchangers. Structure, function, and evolution of respiratory processes. Zoophysiology, 37. Springer Sciences and Business Media, 498 pp.
Nilsson, G. E. & Renshaw, G. M. C. (2004): Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark, Journal of Experimental Biology 207, 3131-3139. https://doi.org/10.1242/jeb.00979
Papáček, M. (2012): On the benthic water bug Aphelocheirus aestivalis (FABRICIUS 1794) (Heteroptera, Aphelocheiridae): Minireview. Entomologica Austriaca 19: 9-19.
Plachý. J. & Horáček. J. (1975): Dýchání larev axolotla mexického. Živa 2: 71-72.
Popham, E. J. (1954): A new and simple method of demonstrating the physical gill of aquatic insects. Proceedings of the Royal Entomological Society of London. Series A, General Entomology, 29: 51–54. https://doi.org/10.1111/j.1365-3032.1954.tb01197.x
Seymour, R. S. & Matthews, P. G. (2013): Physical gills in diving insects and spiders: theory and experiment. Journal of Experimental Biology 216: 164-170. https://doi.org/10.1242/jeb.070276
Vornanen, M., Stecyk, J. A. W. & Nilsson G. E. (2009): 9. The anoxia tolerant Crucian carp (Carassius carassius L.). Fish physiology, Hypoxia, 27: 397-441. https://doi.org/10.1016/S1546-5098(08)00009-5
Van Waarde, A., van den Thillart, G. E. E. J. & Kesbeke, F. (1983): Anaerobic energy metabolism of the European Eel, Anguilla anguilla L. Journal of Comparative Physiology 149(4): 469-475. https://doi.org/10.1007/BF00690005
Walker, R. M. & Johansen, P. H. (1977): Anaerobic metabolism in goldfish (Carassius auratus), Canadian Journal of Zoology 55, 1304-1311. https://doi.org/10.1139/z77-170