Genetically modified plants resistant to drought or salinity

Zdeněk Opatrný, Jana Nedělová, Věra Čížková


volume: 28
year: 2019
issue: 4
fulltext: PDF

online publishing date: 31/12/2019
DOI: 10.14712/25337556.2019.4.2
ISSN (Online): 2533-7556

Licence Creative Commons
Toto dílo podléhá licenci Creative Commons Uveďte původ 4.0 Mezinárodní License.


During their evolution, plants have developed a number of mechanisms to resist biotic and abiotic stressors. Evolution is an endless process, which continues, of course, even today. In the case of crop plants, however, evolution’s o­riginal contingency is replaced by targeted breeding. This is based on the same natural processes – mutagenesis, hybridization and selection. However, the classical techniques are now significantly complemented by genetic engineering methods. Based on knowledge of the molecular basis of plant stress resistance mechanisms, these processes are subsequently used to obtain new, practically-useful genotypes. The present paper is therefore aimed at explaining the biological effects of drought or salinity from the molecular level to the complex reactions of the whole organism. Subsequently, the paper illustrates various opportunities for using transgenic techniques (gene modifications, GM) for the construction of crops resistant to these stressors, explains their gene background and illustrates, in selected examples, both the history of partial research strategies, their present status and also their prospects. In addition, the paper briefly informs about a new technique of gene editing (GE) based on the mechanisms of natural repair of the plants' own genes. This precise mutagenesis has also found practical, revolutionary, applications both in human gene therapy and in effective “nature-close” breeding and plant protection.


plants, stress, water, drought, salinity, plant breeding, plant biotechnology, genetic modifications

fulltext (PDF )



Andrová, J., Opatrný, Z., Čížková, V. Transgenní plodiny I. Biologie, chemie, zeměpis, 2016, 25 (2): 62-68.

Afzal, Z., Howton, T. C., Suin, Y., Shahid Mukhtar, M. (2016). The role of aquaporins in plant stress responses. J.Dev. Biol. 4: 1-23.

Babu, R. C., Zhang, J., Blum, A., Ho, T. – H. D., Wu, R., Nguyen, H. T. (2004). HVA1, a LEA gene from barley confers dehydration tolerance in transgenicrice (Oryzasativa L.) via cell membrane protection. Plant Science 166: 855–862.

Castiglioni, P., Warner, D., Bensen, R. J., Anstrom, D. C., Harrison, J., Stoecker, M., Abad, M., Kumar, G., Salvador, S., D’Ordine, R., Navarro, S., Back, S., Fernandes, M., Targolli, J., Dasgupta, S., Bonin, C., Luethy, M. H., Heard, J. E. (2008). Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiology 147: 446–455.

Chen, T. H. H., Murata, N. (2011). Glycine betaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant, Cell and Environment 34: 1–20.

Grunewald, W., Bury, Jo (2016). The GMO revolution. LannooCampusPublLeuven, Belgium. ISBN 978 94 014 3219 1.

Halford, N., ed. (2006). Plant biotechnology. Current and future applications of genetically modified crops. John Willey and Sons Ltd. ISBN 0-470-02181-0

He, Z., Zhong, J., Sun, X., Wang, B., Terzaghi, W., Dai, M. (2018). The maize ABA receptors ZmPYL8,9 and 12 facilitate plant drought resistence. Front Plant Sci 9: 1-12.

Jaganathan, D, Ramasamy, K, Sellamuthu, G., Jayabalan, S., Venkataraman, G. (2018). CRISPR for crop improvement: An update review Front.PlantSci. 9: 1-17.

Li, W., Wang, L., Sheng, X., Yan, C., Zhou, R., Hang, J. et al. (2013). Molecular basis for the selective and ABA – independent inhibition of PP2CA by PYL 12. Cell Res. 23: 1369-1379.

Liao, X., Guo, X., Wang, Q., Wang, Y., Zhao, D., Yao, L., Wang, S., Liu, G., Li, T. (2017). Overexpression of MsDREB6.2 results in cytokinin-deficient developmental phenotypes and enhances drought tolerance in transgenic apple plants. Plant J. 89: 510-526.

Liu, Y., Liang, J., Sun, L., Yang, X., Li, D. (2016). Group 3 LEA protein, ZmLEA 3, is involved in protection from low temperature stress. Front Plant Sci. 7: 1-10.

Munns, R., Tester, M. (2008). Mechanism of Salinity Tolerance. Annual Rewiew of Plant Biology 59: 651–681.

Muvunyi, B. P., Yan, Q., Wu, F., Min, X., Yan, Z. Z., Kanzana, G., Wang, Y., Zhang, J. (2018). Mining late embryogenesis abundant (LEA) family genes in Cleistogenes songorica, a xerofyte perennial desert plant. Int.J.Mol.Sci.

Murphy, D. J. (2007). People, plants and genes. Oxford University Press. ISBN 978-0-19-920713-8.

Nedělová, J. (2014). Geneticky modifikované rostliny ve vztahu k řešení problematiky globálních klimatických změn. Diplomová práce, PřF UK.

Opatrný, Z. (2018). Trofim Denisovič a horizontální genový přenos. In: Kyša, L., Zlatník, Č. Věda kontra iracionalita. Academia, 2018. ISBN 978-80-200-2868-6.

Pokorná, L., Kučerová, M., Huth, R. (2018). Annual cycle of temperature trends in Europe, 1961–2000, Global and Planetary Change, 170: 146-162.

Sakamoto, A., Murata, N. (2000). Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance.  Journal of Experimental Botany 51 (342): 81–88.

Shi, J., Gao, H., Wang, H., Lafitte, R., Archibald, R. L., Yang, M., Hakimi, S. M., Mo, H., Habben, J. E. (2017). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol.J. 15: 207-216.

Sivamani, E., Bahieldin, A., Wraith, J. M., Al-Niemi, T., Dyer, W. E., Ho, T.-H. D., Qu, R. (2000). Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barely HVA1 gene. Plant Science 155: 1–9.

Taiz, L., Zeiger, E., Moller, I. M., Murphy, A. (2016). Plant physiology and development. Sixth edition. Sinauer Associates Inc, Maryland, USA. ISBN 978-1-60535-255-8.

Wang, J.-M., Fan, Z.-Y., Liu, Z.-B., Xiang, J.-B., Chai, L., Li, X.-F.,Yang, Y. (2011). Thylakoid-bound ascorbate peroxidase increases resistance to salt stress and drought in Brassica napus. African Journal of Biotechnology 10(41): 8039–8045.

Wang, Y., Beaith, M., Chalifoux, M., Ying, J., Uchacz, T., Sarvas, C., Griffiths, R., Kuzma, M., Wan, J., Huang, Y. (2009). Shoot-specific down-regulation of protein farnesyltransferase (α-subunit) for yield protection against drought in canola. Molecular Plant 2 (1): 191–200.

Wang, L, Liu, Y., Feng, S., Yaqng, J., Li, D., Zhang, J. (2017). Role of plasmalemma aquaporin gene StPIP1 in enhancing drought tolerance in potato. Front Plant Sci 8: 1-22.

Wei, T., Deng, K., Liu, D., Gao, Y., Liu, Y., Yang, M., Zhang, L., Zheng, X., Wang, Ch., Song, W., Chen, Ch., Zhang, Y. (2016). Ectopic expression of DREB transcription factor, AtDREB1A, confers tolerance to drought in transgenic Salvia miltiorrhiza. Plant Cell Physiol 57: 1593-1609.

Werner, T., Nehnevajova, E., Köllmer, I., Novák, O., Strnad, M., Krämer, U., Schmülling, T. (2010). Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and Tobacco. The Plant Cell 22: 3905–3920.

Zhao, Y., Chan, Z., Gao, J, Xing, L., Cao, M., Yu, Ch., Hu, Y., You, J., Shi, H., Zhu, Y., Gong, Y., Mu, Z., Wang, H., Deng, X., Wang, P., Bressan, N. A., Zhu, J. K. (2016). ABA receptor PYL9 promotes drought resistence and Leaf senescence. PNAS 113: 1949-1954.

Zhou, S., Hu, W., Deng, X., Ma, Z., Chen, L., Huang, C., Wang, C., Wang, J., He, Y., Yang, G., He, G. (2012). Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS ONE 7 (12): e52439.

Zou, J., Liu, C., Liu, A., Zou, D., Chen, X. (2012). Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. Journal of Plant Physiology 169: 628–635.

We use cookies to analyse our traffic. More information