article

Misconceptions Concerning Animism, or, the Atom is Alive?

Eva Hejnová

information

volume: 29
year: 2020
issue: 3
fulltext: PDF

online publishing date: 1/10/2020
DOI: 10.14712/25337556.2020.3.3
ISSN (Online): 2533-7556

Licence Creative Commons
Toto dílo podléhá licenci Creative Commons Uveďte původ 4.0 Mezinárodní License.

abstract

The “atom” is a concept that students encounter in both physics and chemistry. The difficulty of the explication of this concept is that it is a highly abstract construct. Teachers use different models, analogies and metaphors during the explanation of this concept as well as various anthropomorphic formulations. However, pupils often create their own models in their minds and their ideas may differ considerably from the idea of the atom that their teachers have. The aim of this paper is to present one of the most common misconceptions, “animism”, i.e., the idea that an atom is alive (that it has the characteristics of a living organism). The frequency of the occurrence of misconceptions associated with animism is illustrated with the example of research into ideas about atoms that we carried out in the Czech Republic on a set of pupils from one fourth class of an eight-year secondary grammar school and from six classes of the ninth grade from lower secondary schools as well as on a set of pre-service primary student teachers and bachelor’s students of natural sciences from several Czech universities. All participants of this study were quizzed on their understanding of the concept of an atom using a one-tier diagnostic test which included some of the most common misconceptions about atoms that have been identified in international education research. In this paper, we comment in detail on the results obtained from the respondents’ answers to two test items that were related to animism. Our research has shown that especially pupils from lower secondary schools and also pre-service primary student teachers have many misconceptions about the atom associated with animism. Many of them are most likely related to the fact that pupils and students confuse atoms and cells and often atoms and molecules too. The most widespread misconceptions include the idea that when an animate being dies, the atoms cleave to simpler parts and those then create new atoms, and the idea that atoms cease to exist once an animate being decomposes.


keywords

lower secondary school, university, misconception, atom, animism

fulltext (PDF )

PDF

References

AYAS, A., ÖZMEN, H.,  ÇALIK, M. (2010). Students´ Conceptions of the Particulate Nature of Matter at Secondary and Tertiary Level. International Journal of Science and Mathematics Education, 8(1), 165–184. http://dx.doi.org/10.1007/s10763-009-9167-x

AYDENIZ, M., BILICAN, K.,  KIRBULUT, Z. D. (2017). Exploring Pre-Service Elementary Science Teachers’ Conceptual Understanding of Particulate Nature of Matter through Three-Tier Diagnostic Test. International Journal of Education in Mathematics, Science and Technology, 5(3), 221–223. https://doi.org/10.18404/ijemst.296036

DRIVER, R. et al. (2003). Making Sense of Secondary Science. New York: Routledge Falmer. https://doi.org/10.4324/9780203978016

GRIFFITHS, A. K.  PRESTON, K. P. (1992). Grade-12 Students’ Misconceptions Relating to Fundamental Characteristics of Atoms and Molecules. Journal of Research in Science Teaching, 29(6), 611–628. https://doi.org/10.1002/tea.3660290609

HARRISON, A. G.  TREAGUST, D. F. (1996). Secondary Students´ Mental Models of Atoms and Molecules: Implications for Teaching Chemistry. Science Education, 80(5), 509–534. https://doi.org/10.1002/(SICI)1098-237X(199609)80:5<509::AID-SCE2>3.0.CO;2-F

HEJNOVÁ, E.  HEJNA, D. (2018). Miskoncepce žáků o atomech v kontextu představ starověkých myslitelů o stavbě hmoty. Scientia in educatione, 9(2), 22–43. https://doi.org/10.14712/18047106.1176

KARATAŞ, F., ÜNAL, S., DURLAND, G.,  BODNER, G. (2013). What Do We Know About Students´ Beliefs? Changes in Students´ Conceptions of the Particulate Nature of Matter from Pre-instruction to College. In G. Tsapralis and H. Sevian (eds.) Concepts of Matter in Science Education, 231–247. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-5914-5_11

KOKKOTAS, P., VLACHOS, I.,  KOULAIDIS, V. (1998). Teaching the topic of the particulate nature of matter in prospective teachers’ training courses. International Journal of Science Education, 20(3), 291–303. https://doi.org/10.1080/0950069980200303

LEMMA, A. (2013). A diagnostic assessment of eighth grade students´ and their teachers´ misconceptions about basic chemical concepts. African Journal of Chemical Education, 3(1), 39–59. Dostupné z: https://www.ajol.info/index.php/ajce/article/view/84852

MANDÍKOVÁ, D.  TRNA, J. (2011). Žákovské prekoncepce ve výuce fyziky, Brno: Paido.

MAUNOVÁ, K. (2010). Žákovské představy a pojetí učiva (rigorózní práce). Nepublikováno. Západočeská unoverzita, Plzeň. Dostupné z: https://kof.zcu.cz/st/rz/prace/maunova.pdf

MŠMT (2017). Rámcový vzdělávací program pro základní vzdělávání. Praha: MŠMT. Dostupné z: http://www.msmt.cz/file/43792_1_1/

PALEČKOVÁ, J., TOMÁŠEK, V.,  STRAKOVÁ, J. (1997). Třetí mezinárodní výzkum matematického a přírodovědného vzdělávání (Výsledky žáků 7. a 8. ročníků – Přírodovědné předměty). Praha: ÚIV.

PIAGET, J. (1971). The child's conception of the world. London: Routledge & Kegan Paul LTD. Dostupné z: https://archive.org/details/childsconception01piag/page/n7/mode/2up

PRŮCHA, J., WALTEROVÁ, E., MAREŠ, J. (2009). Pedagogický slovník. Praha: Portál.

StatSoft, Inc. (2013). Statistica (data analysis software system), version 13.3. http://statistica.io

STEPANS, J. (2003). Targeting Students´ Science Miskonceptions. Tampa: Showboard.

STERBERG, R. J. (2002). Kognitivní psychologie. Praha: Portál.

ŠKODA, J.  DOULÍK, P. (2006). Výzkum dětských pojetí vybraných přírodovědných fenoménů z učiva fyziky a chemie na základní škole. Pedagogika, 56(3), 231–245.

TABER, K. S. & ABDO, K. (2013). Developing Chemical Understanding in the Explanatory Vacuum: Swedish High School Students’ Use of an Anthropomorphic Conceptual Framework to Make Sense of Chemical Phenomena. In G. Tsapralis and H. Sevian (eds.) Concepts of Matter in Science Education, 347–370. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-5914-5_17

TAN, K. C. D., GOH, N. K., CHIA, L. S.,  TREAGUST, D. F. (2002). Development and Application of a Two-tier Multiple Choice Diagnostic Instrument to Assess High School Students' Understanding of Inorganic Chemistry Qualitative Analysis. Journal of Research in Science Teaching, 39(4), 283–301. https://doi.org/10.1002/tea.10023

UNVER, A. O.  ARABACIOGLU, S. (2015). Helping Pre-service Science Teachers to understand Atomism Through Observations and Experiments. Journal of Baltic Science Education, 14(1), 64–84.

VALANIDES, N. (2000). Primary Student Teachers’ Understanding of the Particulate Nature of Matter and its Transformations during Dissolving. Chemistry Education: Research and Practice in Europe, 1(2), 249–262. http://dx.doi.org/10.1039/A9RP90026H https://doi.org/10.1039/A9RP90026H


We use cookies to analyse our traffic. More information