article

Subject Matters of Experiments and Water Animals Observations in School Aquarium (I. Animal Locomotion)

Lubomír Hanel

information

volume: 26
year: 2017
issue: 4
fulltext: PDF

online publishing date: 31/12/2017
DOI: 10.14712/25337556.2017.4.4
ISSN (Online): 2533-7556

Licence Creative Commons
Toto dílo podléhá licenci Creative Commons Uveďte původ 4.0 Mezinárodní License.

abstract

This contribution provides instructions for several simple observations and experiments of some exotic and native invertebrate and vertebrate animals, which can be kept in a school freshwater aquarium. Demonstrations of various kinds of animal locomotion are presented in this first part. They are two ways of locomotion of planarians (e.g. Dendrocoelum lacteum), gliding (beating by cilia) and creeping (muscular activity). Fresh water snails, such as the pond snails (e.g. Lymnaea stagnalis), can also crawl on the water surface's under­side. The pallial cavity filled with air (pond snails are pulmonate snails breathing oxygen from the air) gives them buoyancy and together with their slime trace, the water's surface tension is sufficient to support their weight. Locomotion in the pond snail is accompanied by rhythmic shell movements, caused by contractions of the columellar muscles. Special moving is known in some freshwater mussels (e.g. Pseudanodonta complanata, Sinanodonta woodiana). Their foot is inserted into the ground and then pumped up with hemolymph, so that it serves as an anchor, after which the mussel can pull body and shell over the ground. Jet-propulsion in dragonfly larvae (e.g. Aeshna, Libellula) is achieved by the rapid ejection of water from a specialised rectal chamber via the anus. The bell in freshwater jellyfish (Craspedacusta sowerbyi) can pulsate to acquire propulsion and locomotion. Some insect larvae (e.g. dragonfly, caddisfly, stonefly) or also adults specimens (e.g. water scorpion, water stick insect) can move using walking on substrate or plants. The hydra (e.g. Hydra oligactis) also moves from one place to another in search of food. With the help of glutinant nematocysts the tentacles attach to the substratum. The pedal disc is released and brought up closer to the circlet of tentacles and attached. The whole process is repeated again and again. Leeches use for motion on substrate their two suckers. They attach with their front sucker and draws up the hind end, then reach out for a new front attachment using front sucker (leeches can also swim by undulations of the body). Mosquito larvae swim by jerky movements of their entire bodies. Helical swimming is typical for the freshwater oligochaete Lumbriculus variegatus. Water striders (Gerridae) move on the water surface using their central pair of hydrophobic legs in a sculling motion. Most crustaceans, such as shrimp, usually swim by paddling with special swimming legs (pleopods). Swimming crabs swim with modified walking legs (pereiopods). Daphnia, a crustacean, swims by beating its antennae instead. Water louse (Asellus aquaticus) moves using walking. Some water insect swim by paddling of three pair of their legs (e.g. water boatman Corixa sp., diving beetle Dytiscus sp.). Many fish swim through water by creating undulations with their bodies or oscillating their fins. Frogs swim in a similar style as people doing the breaststroke. They draw their hind legs upward toward their bodies. Then, to proper themselves forward, they shoot their legs out backwards in a straight lines. They bring their front legs down to their sides to form streamlined shape (e.g. common frog, Rana temporaria) or their front legs are pointing forwards (e.g. African clawed frog, Xenopus laevis).


keywords

school aquarium, ecological and ethological observations, water invertebrates and vertebrates, animal locomotion

fulltext (PDF )

PDF

References

Caponigro M.A. & Eriksen C.H. (1976). Surface film locomotion by the water strider, Gerris remigis Say. The American Midland Naturalist, 95, 2: 268-278.

Dobrowolsi K.A. (1971). Jak živočichové plavou. Knižnice všeobecného vzdělání – Maják. 256 s.

Domenici P. & Kapoor B.G. (eds.) (2010). Fish locomotion: an Eco- ethological Perspective. CRC Press, 549 s.

Drahotušský Z. & Novák J. (2000). Akvaristika. Jota, 304 s.

Drewes Ch.D. (1999). Helical swimming and body reversal behaviors in Lumbriculus variegatus (Annelida: Clitellata: Lumbriculidae). Hydrobiologica, 406: 263-269. https://doi.org/10.1023/A:1003784100638

DUSIL V. (1957). Chov potápníka vroubeného. Živa, 1: 30.

Frank S. (2013). Akvaristika. 100+1 záludných otázek. Aventinum, Praha, 200 s.

Gazzola M., Argentina M. & Mahadevan L. (2014). Scaling macroscopic aquatic locomotion. Nature Physics, Letters, Published online 14.December 2014, 4 s. https://doi.org/10.1038/nphys3078

Hanel L. (2001). Akvaristika. Biologie a chov vodních živočichů. I. Obecná část. Skriptum Přírodovědecké fakulty Univerzity Karlovy, Praha, 228 s.

Hanel L. & Lišková E. (2003). Stručný obrazový klíč k určování hlavních skupin vodních bezobratlých. Pedagogická fakulta Univerzity Karlovy, Praha, 76 s.

Hanel L. (2004). Akvaristika. Biologie a chov vodních živočichů. II. Speciální část. Skriptum Přírodovědecké fakulty Univerzity Karlovy, Praha, 260 s.

Heráň I. (1982). Díváme se na zvířata. Panorama, Praha, 216 s.

Hofmann J. & Novák J. (1996). Akvaristika. X-Egem Nova, Praha, 197 s.

Hofmann J. & Novák J. (1998). Velký atlas akvarijních ryb. Brázda, Praha, 364 s.

Hofmann J. & Novák J. (1999). Akvárium sladkovodní a mořské – praktické návody k založení a ošetřování. Brázda, Praha, 204 s.

Hu L.D., Chan B. & Bush J.W. (2003). The hydrodynamics of water strider locomotion. Nature, 424: 663-666. https://doi.org/10.1038/nature01793

Hu D.L. & Bush J.W. M. (2010). The hydrodynamics of water-walking arthropods. Journal of Fluid Mechanics, 644: 5–33. https://doi.org/10.1017/S0022112009992205

Javorek V. (1978). Kapesní atlas ploštic a křísů. SPN Praha, 400 s.

Lellák J. et al. (1972). Biologie vodních živočichů, Skriptum přírodovědecké fakulty Univerzity Karlovy, Praha, 218 s.

Nachtigall W. (1974). Chapter 6, Locomotion: Mechanics and Hydrodynamics of swimming in aquatic insects, 382-395. In: Rockstein M. (1974). The physiology of Insecta. Vol. 3, Academic Press, New York, London, 536 s.

Nauwelaerts S., Stamhuis E.J. & Aerts P. (2005). Propulsive force calculations in swimming frogs I. A momentum–impulse approach. Journal of Experimental Biology, 208: 1435-1443. https://doi.org/10.1242/jeb.01509

Novák J. (1983). Vodní brouci v akváriu. Akvárium terárium, 3:16.

Patoka J. (2010). Krevety sladkovodní. Robi maus, 72 s.

Stamhuis E.J. & Nauwelaerts S. (2005). Propulsive force calculations in swimming frogs II. Aplication of vortex ring model to DPIV data. Journal of Experimental Biology, 208: 1445-1451. https://doi.org/10.1242/jeb.01530

Strickman D. (1989). Biosystematics of larval movement of Central American mosquitoes and its use in field identification. Journal of the American Mosquito Control Association, 5, 2: 208-218.

Taylor G., Triantafyllou M.S. & Tropea C. (eds.) (2010). Animal locomotion. Springer-Verlag Berlin Heidelberg 443 s. https://doi.org/10.1007/978-3-642-11633-9

Videler J.J. & Wardle C.S. (1991). Fish swimming stride by stride: speed limits and endurance. Reviews in Biology and Fisheries, 1: 23-40. https://doi.org/10.1007/BF00042660

Vogel S. (2008). Modes and scaling in aquatic locomotion. Integrative and Comparative Biology, 48, 6: 702-712. https://doi.org/10.1093/icb/icn014

Yeo K.B., Teo K.T.K. & Loong W.W. (2014). Brief development of underwater autonomous biomimetic fish. Journal of Applied Sciences, 14, 23: 3202-3210. https://doi.org/10.3923/jas.2014.3202.3210

ZipPe F.X.M. & Krejčí J. (1861). Přírodopis pro nižší reálné školy. Praha.


We use cookies to analyse our traffic. More information