Teaching Biology with Fluorescent Microscope and it’s Influence on Pupils’ Knowledge
Atractivity of science subjects, including biology, has been one of the hot topics of science teaching for decades. Generations of teachers and scientists have been discussing the best ways to show pupils natural beauties, improve both knowledge and pupils’ attitudes toward science and how to involve pupils into studying science and biology. We decided to test if using an uncommon tool, namely fluorescent microscope and microphotographs, influence pupils’ knowledge in post-test and delayed post-test. The respondents were 102 upper secondary school pupils who filled in a knowledge pre-test, post-test and delayed post-test. Data from 69 pupils were analysed. All the pupils underwent the intervention, a practical course focused on microscopy. One group also worked with fluorescent microscope, the second group worked with microphotographs obtained using this fluorescent microscope. The results showed all pupils gained knowledge as measured in the post-test. The difference between the two groups was in the results of delayed post-test. Pupils who worked with fluorescent microscope retained significantly more knowledge compared to the pre-test. Using the fluorescent microscope helped them to fixate gained knowledge better than using microphotographs. The accuracy with which the pupils filled in the work sheets correlated with post-test results, but not with delayed post-test results. Links showing on-line photo gallery are part of the paper.
microscopy, practical course
Bukáčková, A. (2016). Efektivita výuky poznávání organismů na příkladu krytosemenných rostlin. Diplomová práce, Přírodovědecká fakulta Univerzity Karlovy v Praze.
Bukáčková, A., & Janštová, V. (2016). Efektivita výuky poznávání organismů na příkladu krytosemenných rostlin. In Trendy v didaktice biologie, sborník abstraktů (Roč. 2). Praha: Pedagogická fakulta Univerzity Karlovy.
Çimer, A. (2012). What makes biology learning difficult and effective: Students’ views. Educational Research and Reviews, 7(3), 61–71.
Dee, F. R. (2009). Virtual microscopy in pathology education. Human Pathology, 40(8), 1112–1121. https://doi.org/10.1016/j.humpath.2009.04.010
Fančovičová, J. (2016). Effect of Practical Activities with Living Organisms to Reduce Disgust of animals. In Trendy v didaktice biologie, sborník abstraktů (Roč. 2, s. 42). Praha: Pedagogická fakulta Univerzity Karlovy.
Fernandes, E. V. (2004). Učení a jeho problémy: mozek, emoce, mysl a činnost.
Fónyad, L., Gerely, L., Cserneky, M., Molnár, B., & Matolcsy, A. (2010). Shifting gears higher-digital slides in graduate education-4 years experience at Semmelweis University. Diagnostic pathology, 5(1), 73.
Harris, T., Leaven, T., Heidger, P., Kreiter, C., Duncan, J., & Dick, F. (2001). Comparison of a virtual microscope laboratory to a regular microscope laboratory for teaching histology. The Anatomical Record, 265(1), 10–14. https://doi.org/10.1002/ar.1036
Hunt, J. (2007). ICT-mediated science inquiry: the Remote Access Microscopy Project (RAMP). Australian Educational Computing, 22(1), 26–33.
Jäkel, L. (2011). Working with the microscope as a problem solving process. In E-Book Proceedings of the ESERA 2011 Conference: Science learning and Citizenship. Part: Pre-service science teacher education (s. poster). Lyon.
Jančaříková, K. (2017). Modely v didaktice biologie. Biologie-Chemie-Zeměpis, 26(1). https://doi.org/10.14712/25337556.2017.1.1
Janštová, V. (2015). What is actually taught in high school biology practical courses. In ICERI2015 Proceedings (Roč. 8, s. 1501–1507). Seville, Spain.
Janštová, V., & Jáč, M. (2014a). Modelování ve výuce biologie (1) aneb jak žákům přiblížit některé biologické jevy. Biologie Chemie Zeměpis, 23(2), 61–65.
Janštová, V., & Jáč, M. (2014b). Modelování ve výuce biologie (2) aneb jak žákům přiblížit některé biologické jevy. Biologie Chemie Zeměpis, 23(3), 111–116.
Janštová, V., & Pavlasová, L. (2016). Bioinformatics at grammar schools, view of pre-service teachers. In Project-based Education in Science Education (Roč. 13, s. 77–80). Praha: Charles University in Prague, Faculty of Education. Získáno z http://pages.pedf.cuni.cz/pvch/files/2016/02/proceedings_2015.pdf
Kumar, D., Singanamala, H., Achuthan, K., Srivastava, S., Nair, B., & Diwakar, S. (2014). Implementing a Remote-Triggered Light Microscope: Enabling Lab Access via VALUE Virtual labs. In Proceedings of the 2014 International Conference on Interdisciplinary Advances in Applied Computing (s. 49). ACM. Získáno z http://dl.acm.org/citation.cfm?id=2660963
McHale, J. L., & Seybold, P. G. (1976). Luminescence experiment using adsorbed dyes. Journal of Chemical Education, 53(10), 654. https://doi.org/10.1021/ed053p654
Merk, M., Knuechel, R., & Perez-Bouza, A. (2010). Web-based virtual microscopy at the RWTH Aachen University: Didactic concept, methods and analysis of acceptance by the students. Annals of Anatomy - Anatomischer Anzeiger, 192(6), 383–387. https://doi.org/10.1016/j.aanat.2010.01.008
Odcházelová, T. (2014). Role multimédií ve výuce přírodních věd. Scientia in educatione, 5(2), 2–12.
O’Hara, P. B., St. Peter, W., & Engelson, C. (2005). Turning on the Light: Lessons from Luminescence. Journal of Chemical Education, 82(1), 49. https://doi.org/10.1021/ed082p49
Randler, C., & Bogner, F. X. (2006). Cognitive achievements in identification skills. Journal of Biological Education, 40(4), 161–165. https://doi.org/10.1080/00219266.2006.9656038
Scoville, S. A., & Buskirk, T. D. (2007). Traditional and virtual microscopy compared experimentally in a classroom setting. Clinical Anatomy, 20(5), 565–570. https://doi.org/10.1002/ca.20440
Triola, M. M., & Holloway, W. J. (2011). Enhanced virtual microscopy for collaborative education. BMC Medical Education, 11, 4. https://doi.org/10.1186/1472-6920-11-4
Vlaardingerbroek, B., Taylor, N., Bale, C., & Kennedy, J. (2017). Linking the experiential, affective and cognitive domains in biology education: a case study – microscopy. Journal of Biological Education, 51(2), 144–150. https://doi.org/10.1080/00219266.2016.1177574
Vohra, C. F. (2000). Changing trends in biology education. In BioEd International Symposium on Biology Education, UNESCO and IUBS (s. 15–18). Získáno z http://intl.concord.org/cbe/trends.html
Wood, L., & Gebhardt, P. (2013). Bioinformatics Goes to School—New Avenues for Teaching Contemporary Biology. PLoS Comput Biol, 9(6), e1003089. https://doi.org/10.1371/journal.pcbi.1003089
Younès, T. (2000). Biological Education: Challenges of the 21st Century. Biology International, 39, 8–13.