How Contemporary Paleogenetics Contributes to Change our Understanding of Origin, Evolution and Migrations of Modern Human Groups

Václav Vančata


volume: 27
year: 2018
issue: 1
fulltext: PDF

online publishing date: 1/4/2018
DOI: 10.14712/25337556.2018.1.4
ISSN (Online): 2533-7556

Licence Creative Commons
Toto dílo podléhá licenci Creative Commons Uveďte původ 4.0 Mezinárodní License.


Paleogenetics is becoming an increasingly important part of palaeoanthropology and evolutionary anthropology. Research of ancient DNA (a-DNA) allows us to reconstruct the genome of our closest ancestors and relatives, the ancient Homo sapiens, neanderthals, and newly discovered human group – denisovans. Development of a new methodology, called high-throughput (very complete) sequencing, has been very important for further development of paleogenetics and better use of its results in anthropology. This allowed us constructing better and more complete DNA libraries and their further use in paleogenetic studies. From the point of view of paleoanthropology, and evolutionary anthropology as well, the following results are the most important ones: The complete mapping of genome of neanderthals, denisovans and anatomically modern humans, which allows us the detail comparison of all the groups examined in terms of reconstruction of their possible hybridisations and studying of their genetic admixture and (admixtures) in modern human populations. Most ancient genome was described in the Australian aborigines, which were found to have up to 6 % of the admixtures of the denisovans genome. On the contrary, the genome of the native Africans was not affected by any other human form. Europeans and Asians have proven to have some of the genes of Neanderthals, Southeast Asians can have some denisovan genes. Crucial meaning has the archaic Homo sapiens genome reconstruction, which shows that Homo sapiens as a species originated at least 750 thousands of years ago.


human evolution, paleoanthropology, paleogenetics, ancient DNA, ancient Homo sapiens, Neanderthals, Denisovans, anatomically modern humans

fulltext (PDF )



Andre´s, A., M., Nowick, K. (2014). Editorial overview: Genetics of human evolution: The genetics of human origins. Current Opinion in Genetics & Development, 29, 5-7.

Antón, S., C. (2003). A Natural History of H. erectus. Yearbook of Physical Anthropology 46,126-170.

Antón, S, C., Spoor, F., Fellmann, C., D., Swisher III, C., C. (2007). Defining Homo erectus: Size Considered. In: Henke, W., Tattersall, I., Hardt T., (eds.) Handbook of Paleoanthropology, Vol III: Phylogeny of Hominids, pp. 1655 - 1694. Berlin Heidelberg New York: Springer‐Verlag.

Brown, S., Higham, T., Slon, V., et al. (2016).Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis. Scientific Reports, 6:23559.

Callaway, E. (2016). Ancient DNA pinpoints dawn of Neanderthals: Sequencing of 430,000-year-old DNA pushes back species' divergence from humans. Nature, 531, 286.

Ermini, L., Der Sarkissian, C., Willerslev E., Orlando L. (2015). Major transitions in human evolution revisited: A tribute to ancient DNA. Journal of Human Evolution, 79, 4-20.

Fu, Q., Heng, Li, Moorjani, P. (2016). Genome sequence of a 45,000-year-old modern human from western Siberia. Nature, 514, 445-450.

Green, R., E., Krause, J., Briggs, A., W., et al. (2010). A draft sequence of the Neandertal genome. Science, 328, 710-722

Harmon, K. (2012). New DNA Analysis Shows Ancient Humans Interbred with Denisovans. Sci. Amer. August 30, 2012:

Hublin J-J, Abdelouahed Ben-Ncer, Bailey S.E., Freidline S.E., Neubauer S., Skinner M. M., Bergmann I., Le Cabec A., Benazzi S. Harvati K. Gunz P. (2017). New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature, 546, 289–292

Huerta-Sanchez, E., Xin, Jin, Asan, et al. (2014): Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512, 194-197.

Kolísko, M. (2017). Moderní metody sekvenování DNA. Živa, 3/2017, LXXIII – LXXVI, 120 (k výuce)

Krause, J., Fu, Q., Good, J., M., Viola, B., Shunkov, M., V., Derevianko, A., P., Pääbo, S. (2010). The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature, 464, 894-897

Malaspinas, S, A., Westaway, N.,C., Muller, C., et al. (2016). A genomic history of Aboriginal Australia. Nature, 538, 207–214.

Maricic, T., Günther, V., Georgiev, O., Gehre, S., Curlin, M., Schreiweis, C., Naumann, R., Burbano, H., A., Meyer, M., Lalueza-Fox, C., de la Rasilla, M., Rosas, A., Gajovic, S., Kelso, J., Enard, W., Schaffner, W., Pääbo, S., (2013). A recent evolutionary change affects a regulatory element in the human FOXP2 gene. Mol Biol Evol., 30(4),844-852.

Meyer, M, Kircher, M, Gansauge, M-T., Li, H., Racimo, F., Mallick, S., Schraiber, J., G., Jay, F., Prüfer, K., de Filippo, C., et al. (2012). A High-Coverage Genome Sequence from an Archaic Denisovan Individual. Science, 338(6104),222-226.

Meyer, M., Arsuaga, J.-L., de Filippo, C., et al. (2016). Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature, 511, 504-507.

Perry, G., H., Orlando, l. (2015). Ancient DNA and human evolution. Journal of Human Evolution, 79, 1-3.

Posth C., Wissing Ch., Kitagawa K., Pagani L., van Holstein L., Racimo F., Wehrberger K., Nicholas J. Conard N. J., Kind C. J., Bocherens H, Krause J., (2017). Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals. Nature Communications, 8, 16046.

Prüfer, K., Racimo, F, Patterson, N. et al, (2013). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505, 43e49.

Radini, A., Nikita, E., Stephen Buckley, S., Copeland, L., Hardy, K. (2017). Beyond food: The multiple pathways for inclusion of materials into ancient dental calculus. Am J Phys Anthropol; 162: 71–83.

Rizzi, E., et al. (2012). Ancient DNA studies: new perspectives on old samples. Genetics Selection Evolution, 44, 21.

Sawyer, S., Renauda, G., Viola, B. et al. (2015). Nuclear and mitochondrial DNA sequences from two Denisovan individuals. PNAS, 112 (51), 15696–15700.

Vančata,V., (2013a). Paleoantropologie a evoluční antropologie. Praha: Nakladatelství PedF UK v Praze. (ISBN 978-80-7290-592-8)

Vančata,V., (2013b). Neandrtálci a anatomicky moderní člověk – vznik a fylogeneze moderních lidských druhů. Biologie, chemie a zeměpis, 4/2013, 171 – 178.

Vančata,V., (2013c). Genetický původ neandrtálců (2). Jak se geneticky lišili neandrtálci a anatomicky moderní člověk? Biologie, chemie a zeměpis, 5/2013, 219 – 225.

Vančata,V., (2013d). Vznik a evoluce rodu Homo: Mýty a milníky. Vývoj lidského rodu s nastíněním vztahu neandrtálců a anatomicky moderního člověka. Culturologie, 2(1), 18 – 35.RIV

Vančata,V., (2015). Nové nálezy homininů a jejich význam z hlediska současného chápání fylogeneze člověka a jeho předků (1). Biologie, chemie a zeměpis, 5/2015, 29-30.

Vančata,V., (2016). Nové nálezy homininů a jejich význam z hlediska současného chápání fylogeneze člověka a jeho předků (2). Biologie, chemie a zeměpis, 1/2016: 13-20.

Welker, F., Hajdinjakc, M., Talamo, S. (2016). Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. PNAS, 113 (40),11162–11167.

Zink, K., D,.Lieberman, D.,E. (2016). Impact of meat and Lower Palaeolithic food processing techniques on chewing in humans. Nature 531, 500–503 (24 March 2016)

We use cookies to analyse our traffic. More information