Subject matters of experiments and observations of water animals in school aquarium III (food intake)

Lubomír Hanel


volume: 27
year: 2018
issue: 4
fulltext: PDF

online publishing date: 31/12/2018
DOI: 10.14712/25337556.2018.4.3
ISSN (Online): 2533-7556

Licence Creative Commons
Toto dílo podléhá licenci Creative Commons Uveďte původ 4.0 Mezinárodní License.


Food intake belongs to fundamental manifestation of animals. In aquaria can be presented various types of food specialization. Filter-feeding activity can be presented in bivalve mollusks (e.g. zebra mussel Dreissena polymorpha) removes phytoplankton and other suspended matter from the water column, both through ingestion and sedimentation of particles.  Scrapers, which are often also referred to as grazers, include also e.g. snails and many types of immature aquatic insects. Scra­pers feed on substrata surfaces, consuming attached algae, heterotrophic components of biofilms, and associated deposited organic sediments.  Scrapers like the apple snail (Pomacea), algae eater (Gyrinocheilus), bristlenose catfish (Ancistrus) can be demonstrated in school aquaria. Predators like dragonflies have long mouthparts that extend. They are examples of predators that hunt mostly by sight. Some other predators hunt by scent. Animal ambush predators usually remain motionless (sometimes hidden) and wait for prey to come within ambush distance before pouncing (see e.g. water stick insect Ranatra linearis, water scorpion Nepa cinerea). Extra-oral digestion can be demonstrated by larvae and adults of the great diving beetle (Dy­tiscus marginalis).


school aquarium, food intake, water animals

fulltext (PDF )



Bailey, P. C. E. (1986). The feeding behaviour of a sit-and-wait predator, Ranatra dispar

(Heteroptera: Nepidae): optimal foraging and feeding dynamics. Oecologia, 68, 291-297.

Beninger, P. G., Veniot, A. & Poussart, Y. (1999). Principles of pseudofeces rejection on the bivalve mantle: integration in particle processing. Marine Ecology Progress Series 178: 259-269.

Cohen A. C. (1998). Solid-to-Liquid-Feeding: The Inside(s) Story of Extra-oral Digestion in Predaceus Arthropoda. American Etomologist, Summer: 103-117.

Fanslow, D. L., Nalepa, T. F. & Lang, G. A. (1995). Filtration Rates of the Zebra mussel (Dreissena polymorpha) on Natural Seston from Saginaw Bay, Lake Huron. J. Great Lakes Research 21(4): 489-500.

Hanel, L. (1987). Poznatky z chovu ostnáče Schomburgkova, Polycentrus schomburgki. Akvárium terárium, 30,1: 17-19.

Hanel, L. (1988). Jak loví a polyká kořist characida štikovitá? Akvárium terárium, 4: 23.

Hanel, L. (1993). Listová ryba. Akvárium terárium, 9: 16-18.

Hanel, L. (1994). Vážky v akváriu. Akvárium terárium, 9: 16-18.

Holling, C. S. (1959a). The components of predation as revealed by a study of small-mammal

predation of the European pine sawfly. The Canadian Entomologist 91, 293-320.

Holling, C. S. (1959b). Some characteristics of simple types of predation and parasitism. The

Canadian Entomologist 91, 385-398.

Choi, H., Kim, Y., Lee, H., Aldridge, D. C. & Kim, B. (2018): Filtration Conditions for the Removal of Organic Matter in Eutrophic Waters by Freshwater Mussels Using Response Surface Methodology. Preprints.

Inoda T., Inoda Y. & Rullan J. K. (2015): Larvae of the water scavenger beetle, Hydrophilus acuminatus (Coleoptera: Hydrophilidae) are specialist predators of snails. Eur. J. Entomol. 112(1): 145-150,

Jeschke, J. M., Kopp, M. & Tollrian, R. (2002). Predator functional responses: discriminating[0095:PFRDBH]2.0.CO;2

between handling and digesting prey. Ecological Monographs 72, 95-112.

Juliano, S. A. (2001). Non-linear curve fitting: predation and functional response curve. In:

Scheiner, S. M. & Gurevitch, J. (Eds.): Design and analysis of ecological experiment. Oxford

University Press Inc., New York, pp. 178-196.

Klečka, J. (2010). Predation by aquatic insects: species traits and habitat structure mediate predator-prey interactions. Dizertační práce, Jihočeská univerzita České Budějovice. 36 pp.

Kovář, P. (2018). Potravní chování hlaváčovitých ryb v závislosti na komplexitě prostředí. Bakalářská práce, Jihočeská univerzita v Českých Budějovicích, Fakulta rybářství a ochrany vod. 61 pp.

Lawton, J. H., Beddington, J., Bonser, R. (1974). Switching in invertebrate predators. In: Usher, M. B., Williamson, M. H. (Eds.): Ecological stability. London: Chapman and Hall, 141-158

Lellák, J. et al. (1972). Biologie vodních živočichů. Skriptum přírodovědecké fakulty UK Praha, 218 pp.

Lundkvist E., Landin J., Jackson M. & Svensson C. (2003). Diving beetles (Dytiscidae) as predators of mosquito larvae (Culicidae) in field experiments and in laboratory tests of prey preference. Bull. Entomol. Res. 93, 219-226.

Murdoch, W. W. & Oaten, A. (1975). Predation and population stability. Advances in Ecological Research 9, 1-131.

Nalepa T. F. & Schloesser D. W. (1992). Zebra mussels biology, impact, and control. CRC Press, 832 pp.

Saha N., Aditya G., Bal A. & Saha G. K. (2007). A comparative study of predation of three aquatic heteropteran bugs on Culex quinquefasciatus larvae. Limnology (2007) 8: 73-80.

Solomon, M. E. (1949). The Natural Control of Animal Populations. Journal of Animal Ecology, 18, 1-35.

Spitze, K. (1985). Functional response of an ambush predator: Chaoborus americanus predation on Daphnia pulex. Ecology, 66, 938-949.

Sprung, M. & Rose, U. (1988). Influence of food size and food quantity on the feeding of the mussel Dreissena polymorpha. Oecologia, 77: 526-532.

Thompson, D. J. (1975). Towards a predator–prey model incorporating age structure: the effects of predator and prey size on the predation of Daphnia magna by Ischnura elegans. Journal of Animal Ecology, 44, 907-916.

We use cookies to analyse our traffic. More information