Subject matters of experiments and observations of water animals in school aquarium III (food intake)
Food intake belongs to fundamental manifestation of animals. In aquaria can be presented various types of food specialization. Filter-feeding activity can be presented in bivalve mollusks (e.g. zebra mussel Dreissena polymorpha) removes phytoplankton and other suspended matter from the water column, both through ingestion and sedimentation of particles. Scrapers, which are often also referred to as grazers, include also e.g. snails and many types of immature aquatic insects. Scrapers feed on substrata surfaces, consuming attached algae, heterotrophic components of biofilms, and associated deposited organic sediments. Scrapers like the apple snail (Pomacea), algae eater (Gyrinocheilus), bristlenose catfish (Ancistrus) can be demonstrated in school aquaria. Predators like dragonflies have long mouthparts that extend. They are examples of predators that hunt mostly by sight. Some other predators hunt by scent. Animal ambush predators usually remain motionless (sometimes hidden) and wait for prey to come within ambush distance before pouncing (see e.g. water stick insect Ranatra linearis, water scorpion Nepa cinerea). Extra-oral digestion can be demonstrated by larvae and adults of the great diving beetle (Dytiscus marginalis).
school aquarium, food intake, water animals
Bailey, P. C. E. (1986). The feeding behaviour of a sit-and-wait predator, Ranatra dispar
(Heteroptera: Nepidae): optimal foraging and feeding dynamics. Oecologia, 68, 291-297. https://doi.org/10.1007/BF00384802
Beninger, P. G., Veniot, A. & Poussart, Y. (1999). Principles of pseudofeces rejection on the bivalve mantle: integration in particle processing. Marine Ecology Progress Series 178: 259-269. https://doi.org/10.3354/meps178259
Cohen A. C. (1998). Solid-to-Liquid-Feeding: The Inside(s) Story of Extra-oral Digestion in Predaceus Arthropoda. American Etomologist, Summer: 103-117.
Fanslow, D. L., Nalepa, T. F. & Lang, G. A. (1995). Filtration Rates of the Zebra mussel (Dreissena polymorpha) on Natural Seston from Saginaw Bay, Lake Huron. J. Great Lakes Research 21(4): 489-500. https://doi.org/10.1016/S0380-1330(95)71061-9
Hanel, L. (1987). Poznatky z chovu ostnáče Schomburgkova, Polycentrus schomburgki. Akvárium terárium, 30,1: 17-19.
Hanel, L. (1988). Jak loví a polyká kořist characida štikovitá? Akvárium terárium, 4: 23.
Hanel, L. (1993). Listová ryba. Akvárium terárium, 9: 16-18.
Hanel, L. (1994). Vážky v akváriu. Akvárium terárium, 9: 16-18.
Holling, C. S. (1959a). The components of predation as revealed by a study of small-mammal
predation of the European pine sawfly. The Canadian Entomologist 91, 293-320. https://doi.org/10.4039/Ent91293-5
Holling, C. S. (1959b). Some characteristics of simple types of predation and parasitism. The
Canadian Entomologist 91, 385-398. https://doi.org/10.4039/Ent91385-7
Choi, H., Kim, Y., Lee, H., Aldridge, D. C. & Kim, B. (2018): Filtration Conditions for the Removal of Organic Matter in Eutrophic Waters by Freshwater Mussels Using Response Surface Methodology. Preprints. https://doi.org/10.20944/preprints201801.0180.v1
Inoda T., Inoda Y. & Rullan J. K. (2015): Larvae of the water scavenger beetle, Hydrophilus acuminatus (Coleoptera: Hydrophilidae) are specialist predators of snails. Eur. J. Entomol. 112(1): 145-150, https://doi.org/10.14411/eje.2015.016
Jeschke, J. M., Kopp, M. & Tollrian, R. (2002). Predator functional responses: discriminating https://doi.org/10.1890/0012-9615(2002)072[0095:PFRDBH]2.0.CO;2
between handling and digesting prey. Ecological Monographs 72, 95-112.
Juliano, S. A. (2001). Non-linear curve fitting: predation and functional response curve. In:
Scheiner, S. M. & Gurevitch, J. (Eds.): Design and analysis of ecological experiment. Oxford
University Press Inc., New York, pp. 178-196.
Klečka, J. (2010). Predation by aquatic insects: species traits and habitat structure mediate predator-prey interactions. Dizertační práce, Jihočeská univerzita České Budějovice. 36 pp.
Kovář, P. (2018). Potravní chování hlaváčovitých ryb v závislosti na komplexitě prostředí. Bakalářská práce, Jihočeská univerzita v Českých Budějovicích, Fakulta rybářství a ochrany vod. 61 pp.
Lawton, J. H., Beddington, J., Bonser, R. (1974). Switching in invertebrate predators. In: Usher, M. B., Williamson, M. H. (Eds.): Ecological stability. London: Chapman and Hall, 141-158 https://doi.org/10.1007/978-1-4899-6938-5_9
Lellák, J. et al. (1972). Biologie vodních živočichů. Skriptum přírodovědecké fakulty UK Praha, 218 pp.
Lundkvist E., Landin J., Jackson M. & Svensson C. (2003). Diving beetles (Dytiscidae) as predators of mosquito larvae (Culicidae) in field experiments and in laboratory tests of prey preference. Bull. Entomol. Res. 93, 219-226. https://doi.org/10.1079/BER2003237
Murdoch, W. W. & Oaten, A. (1975). Predation and population stability. Advances in Ecological Research 9, 1-131. https://doi.org/10.1016/S0065-2504(08)60288-3
Nalepa T. F. & Schloesser D. W. (1992). Zebra mussels biology, impact, and control. CRC Press, 832 pp.
Saha N., Aditya G., Bal A. & Saha G. K. (2007). A comparative study of predation of three aquatic heteropteran bugs on Culex quinquefasciatus larvae. Limnology (2007) 8: 73-80. https://doi.org/10.1007/s10201-006-0197-6
Solomon, M. E. (1949). The Natural Control of Animal Populations. Journal of Animal Ecology, 18, 1-35. https://doi.org/10.2307/1578
Spitze, K. (1985). Functional response of an ambush predator: Chaoborus americanus predation on Daphnia pulex. Ecology, 66, 938-949. https://doi.org/10.2307/1940556
Sprung, M. & Rose, U. (1988). Influence of food size and food quantity on the feeding of the mussel Dreissena polymorpha. Oecologia, 77: 526-532. https://doi.org/10.1007/BF00377269
Thompson, D. J. (1975). Towards a predator–prey model incorporating age structure: the effects of predator and prey size on the predation of Daphnia magna by Ischnura elegans. Journal of Animal Ecology, 44, 907-916. https://doi.org/10.1007/BF00377269